Search results for " helium"
showing 10 items of 151 documents
Turbulent Superfluid Profiles and Vortex Density Waves in a Counterflow Channel
2012
In this paper we study the two-dimensional profiles of the superfluid component velocity and the quantized vortex-points density in a counterflow channel where the influence of the walls cannot be neglected. The numerical results obtained show the presence of vortex density waves in the channel, as shown in a recent paper by means of the one-fluid model.
Active Degassing of Deeply Sourced Fluids in Central Europe: New Evidences From a Geochemical Study in Serbia
2021
We report on the results of an extensive geochemical survey of fluids released in the Vardar zone (central-western Serbia), a mega-suture zone at the boundary between Eurasia and Africa plates. Thirty-one bubbling gas samples are investigated for their chemical and isotopic compositions (He, C, Ar) and cluster into three distinct groups (CO2-dominated, N2-dominated, and CH4-dominated) based on the dominant gas species. The measured He isotope ratios range from 0.08 to 1.19 Ra (where Ra is the atmospheric ratio), and reveal for the first time the presence of a minor (<20%) but detectable regional mantle-derived component in Serbia. δ13C values range from −20.2‰ to −0.1‰ (versus PDB), with…
Vortex density waves and high-frequency second sound in superfluid turbulence hydrodynamics
2010
In this paper we show that a recent hydrodynamical model of superfluid turbulence describes vortex density waves and their effects on the speed of high-frequency second sound. In this frequency regime, the vortex dynamics is not purely diffusive, as for low frequencies, but exhibits ondulatory features, whose influence on the second sound is here explored.
K-ϵ-L model in turbulent superfluid helium
2020
Abstract We generalize the K − ϵ model of classical turbulence to superfluid helium. In a classical viscous fluid the phenomenological eddy viscosity characterizing the effects of turbulence depends on the turbulent kinetic energy K and the dissipation function ϵ , which are mainly related to the fluctuations of the velocity field and of its gradient. In superfluid helium, instead, we consider the necessary coefficients for describing the effects of classical and quantum turbulence, involving fluctuations of the velocity, the heat flux, and the vortex line density of the quantized vortex lines. By splitting the several fields into a time-average part and a fluctuating part, some expressions…
CONDENSATE FRACTION IN THE DYNAMIC STRUCTURE FUNCTION OF BOSE FLUIDS
2007
We present results on the behavior of the dynamic structure function in the short wave length limit using the equation of motion method. The one-body continuity equation defines the self-energy, which becomes a functional of the fluctuating two-body correlation function. We evaluate the self-energy in this limit and show that sum rules up to the second moment, which requires the self-energy in the short wave length limit and zero frequency to be proportional to the kinetic energy per particle, are exactly satisfied. We compare our results with the impulse approximation and calculate the condensate fraction. An analytic expression for the momentum distribution is also derived.
Non-classical Velocity Statistics in Counterflow Quantum Turbulence
2014
In this work we analyse the statistical distribution of turbulent superfluid velocity components in a He II counterflow channel, via two-dimensional numerical simulations pre- sented in past studies. The Probability Density Functions (PDFs) of the superfluid velocity components are investigated at lengthscales smaller than the average intervortex spacing, for varying vortex densities and different wall-normal distances. The results obtained con- firm the non-classical signature of quantum turbulence already observed in past numerical studies.
Large-scale normal fluid circulation in helium superflows
2017
We perform fully-coupled numerical simulations of helium II pure superflows in a channel, with vortex- line density typical of experiments. Peculiar to our model is the computation of the back-reaction of the superfluid vortex motion on the normal fluid and the presence of solid boundaries. We recover the uniform vortex-line density experimentally measured employing second sound resonators and we show that pure superflow in helium II is associated with a large-scale circulation of the normal fluid which can be detected using existing particle-tracking visualization techniques.
Understanding the Origins of Problem Geomagnetic Storms Associated with "Stealth" Coronal Mass Ejections.
2021
Geomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cann…
Hydrodynamic equations of anisotropic, polarized and inhomogeneous superfluid vortex tangles
2008
We include the effects of anisotropy and polarization in the hydrodynamics of inhomogeneous vortex tangles, thus generalizing the well known Hall-Vinen-Bekarevich-Khalatnikov equations, which do not take them in consideration. These effects contribute to the mutual friction force ${\bf F}_{ns}$ between normal and superfluid components and to the vortex tension force $\rho_s{\bf T}$. These equations are complemented by an evolution equation for the vortex line density $L$, which takes into account these contributions. These equations are expected to be more suitable than the usual ones for rotating counterflows, or turbulence behind a cylinder, or turbulence produced by a grid of parallel th…
Quantification of Regional Intrapulmonary Oxygen Partial Pressure Evolution during Apnea by 3He MRI
1999
We present a new method to determine in vivo the temporal evolution of intrapulmonary oxygen concentrations by functional lung imaging with hyperpolarized (3)Helium ((3)He-->). Single-breath, single-bolus visualization of (3)He--> administered to the airspaces is used to analyze nuclear spin relaxation caused by the local oxygen partial pressure p(O(2))(t). We model the dynamics of hyperpolarization in the lung by rate equations. Based hereupon, a double acquisition technique is presented to separate depolarization by RF pulses and oxygen induced relaxation. It permits the determination of p(O(2)) with a high accuracy of up to 3% with simultaneous flip angle calibration using no additional …